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A Bisamide Ruthenium Polypyridyl Complex as a Robust
and Efficient Photosensitizer for Hydrogen Production
Olivier Schott,[a] Amlan K. Pal,[a, b] Daniel Chartrand,[c] and Garry S. Hanan*[a]

A photosensitizer based on a ruthenium complex of a bis-
amide-polypyridyl ligand gives rise to a large improvement in
photocatalytic stability, rate of activity, and efficiency in photo-
catalytic H2 production compared to [Ru(bpy)3]

2+ (bpy=2,2’-
bpyridine). The bisamide ruthenium polypyridyl complex com-

bined with a cobaltoxime-based photocatalyst was found to
be highly efficient under blue-light (turnover number (TON)=

7800) and green-light irradiation (TON=7200) whereas

[Ru(bpy)3]
2+ was significantly less effective with a TON of 2600

and 1100, respectively. The greatest improvement was under

red-light-emitting diodes, with bisamide ruthenium polypyridyl
complex and cobaltoxime exhibiting a TON of 4200 compared

to [Ru(bpy)3]
2+ and cobaltoxime at a TON of only 71.

The future well being of our society relies on innovative re-
search to produce clean sources of energy. With global warm-

ing on the rise, new alternatives to fossil fuels are needed, and
of the several options available, the inexhaustible power of the

sun is one of the most convenient clean energy sources.[1] Mo-
lecular artificial photosynthesis presents a promising avenue

for the conversion and storage of solar energy in chemical

bonds as found in hydrogen gas.[2, 3] Molecular photocatalytic
systems for the hydrogen evolution reaction (HER), half of the

water splitting process, are mainly composed of a photosensi-
tizer (PS), a catalyst, and a sacrificial electron donor. In the last

decade of photocatalytic research, IrIII,[4] ReI,[5] and PtII[6] were
tested to improve the overall performance of the HER. In the
case of PS made of d6 metal complexes, many researchers uti-

lize the archetypical [Ru(bpy)3]
2+ (bpy=2,2’-bpyridine) com-

plex due to its lower cost and higher abundance of Ru com-
pared to other transition-metal complexes.[7] To benefit from
the availability of Ru-based PSs, however, some of its proper-
ties should be modified; for exampole, its absorption maxi-

mum at 450 nm should be shifted to longer wavelengths to
take advantage of the tailing of the solar spectrum through

the visible and near-IR regions.[7a,8]

Among earth-abundant HER catalysts, new advances with
Co catalysts[9] are particularly attractive compared to their Pt,[10]

Pd,[11] and Rh[12] analogs. Cobaltoximes are among the most
studied molecular catalysts for H2 production in electrocatalysis

and photocatalysis.[4c, 6a,7d,9b–d,13] For an efficient photocatalytic
system, the PS and the catalyst must be in close proximity for

efficient electron transfer ; many assemblies exist that are cova-

lently linked or connected by pendant pyridine (py) on the PS,
which coordinates the catalysts.[4b,c,l, 8a,14] Indeed, the better

the electron transfer, the lesser is the probability of PS decom-
position induced by ligand dissociation;[15] for example, the

multi-metallic center-based supramolecular assembly Ru–Co6

has better efficiency than the dissociated [Ru(bpy)3]
2+

–[Co(dmgH)2]
+ (dmgH=dimethylglyoxime) system.[8a,14d]

Charge-separated states and electronic transfer rates were also
investigated through hydrogen-bonding or hydrophobic-inter-

action studies.[16] In this work, complex 1 (Figure 1) was investi-
gated as a PS in combination with [Co(dmgH)2(DMAP)Cl] (3)
(DMAP=4-dimethylaminopyridine) as the photocatalyst to
yield the pre-HER photocatalyst 4 (Figure 1). The photocatalytic
H2 production results were compared with that of archetypical

[Ru(bpy)3]
2+ (2) as the PS and complex 3 as the photocatalyst.

After the initial CoIII-to-CoII reduction, the liberated chloride ion

is available to bind in the pocket of PS 1, thus enhancing its
properties as described by Beer et al. (vide infra).[17]

In the pioneering work of Beer et al. , a family of optoelec-
tronically active bisamide-based ruthenium complexes were

developed for anion recognition.[17] Acyclic, macrocyclic, and
calix[4]arene-substituted amide derivatives were tested to rec-
ognize halides.[17, 18] Herein, the ligand N,N’-diphenyl-[2,2’-bipyr-
idine]-4,4’-dicarboxamide (L) in the heteroleptic RuII complex 1
[bis(2,2’-bipyridine)(L)ruthenium(II) hexafluorophosphate] acts

as a halide-ion receptor and can accommodate a chloride ion
by non-classical hydrogen bonding with a stability constant of

40Lmol@1.[17] Furthermore, molar absorptivity of the 1MLCT

(metal-to-ligand charge transfer) band and emission intensity
of complex 1 are enhanced as a result of chloride-ion recogni-

tion.[17] On this note, we decided to exploit the anion recogni-
tion[19] of complex 1 and the subsequent enhancement of pho-

tophysical properties for artificial photosynthesis. Complex 1
was investigated as a PS in combination with 3 as photocata-
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lyst. The initial reduction of the CoIII species leads to loss of the

chloride anion, which enhances the photophysical properties
of the PS.

Complex 1 (Figure 1) was prepared from [Ru(bpy)2Cl2] and
ligand L as described by Beer et al.[17] It was characterized by
1H and 13 C NMR spectroscopy (Figures S1a and S2 in the Sup-
porting Information), high-resolution mass spectrometry, and

elemental analysis. 3 was synthesized following a literature

procedure.[13d] The formation of pre-HER catalyst 4 is supported
by 1H NMR studies of 1 and 3 (see the Supporting Information,

Figure S1b), which revealed chemical shifts similar to those
found previously.[17] Single crystals of 1 suitable for X-ray analy-

sis were obtained by slow vapor diffusion of diethylether into
a concentrated acetonitrile solution of complex 1, prepared di-
rectly as its chloride salt (see Figures 2 and S3 in the Support-

ing Information for complete labelling). Selected crystallo-
graphic parameters are tabulated in Table S1 in the Supporting
Information. A comparison of bond angles and distances ob-
tained crystallographically and by density functional theory

(DFT) calculation of complex 1 is tabulated in Table S2 in the
Supporting Information. The coordinatively saturated RuII

center in complex 1 has a distorted octahedral geometry. The

Ru@N distances for the coordinated bpy ligands are approxi-
mately the same for compound 1 (varies from 2.063(4) to

2.081(3) a). These values are in line with the distances ob-
served in Ru@bpy complexes in general (1.96–2.16 a, aver-

age=2.06(5) a[20]). The chloride anion is encapsulated in the
amide pocket of L in complex 1 through non-classical hydro-

gen bonding, as shown by Beer et al.[17]

The optoelectronic data for 1 and 2 are gathered in Table 1.
In electrochemical experiments (Figure S4 and Table S3 in the

Supporting Information ) at positive potential, an anodic shift
of 120 mV is observed for the first oxidation potential (RuIII/

RuII) of 1 (E1/2
Ox=1.38 V) compared to that of complex 2

(E1/2
Ox=1.26 V), in agreement with the lower energy calculated

for the highest occupied molecular orbital (HOMO) of
complex 1 (EHOMO=@6.24 eV) compared to that of

complex 2 (EHOMO=@6.11 eV) (Figure 3 and Tables S3
and S4). The first reduction potential of 1 (E1/2

Red=

@1.06 V) is 270 mV less negative than that of 2
(E1/2

Red=@1.33 V), which is in line with the fact that
the electron-withdrawing amide groups stabilize the
lowest unoccupied molecular orbital (LUMO) of com-
plex 1 compared to the same of reference complex 2
(calculated ELUMO=@2.92 and @2.54 eV, respectively,
for complexes 1 and 2).

In the UV/Vis absorption spectra in Figure 4 several
intense transitions in the high-energy region

(<300 nm) are observed, which can be assigned to
ligand-centered (LC) p–p* transitions, as predicted by

time-dependent (TD)-DFT calculations (Tables S5 and

S6). The transitions between 300–450 nm are mostly
related to singlet 1MLCT transitions (either from

Ru(dp) to bpy(p*) or Ru(dp) to L(p*)), The contribu-
tion of LC transitions is minor. The lowest energy

transition at 476 nm is exclusively attributable to the

Figure 1. Molecular structures of RuII-based PSs 1 and 2 and cobaloxime 3 used in this
study; 4 describes the chloride anion transfer from 3 to 1 after reduction of the CoIII

complex.

Figure 2. Oak Ridge thermal-ellipsoid plot (ORTEP) view of complex 1. Ellip-
soids correspond to a 50% probability level. Hydrogen atoms and one of
the two chloride counter anions were omitted for clarity.

Table 1. Optoelectronic data of 1 and 2 in deaerated MeCN.[a]

Parameter Compound
1 2

Eox [V] (DEp [mV]) 1.38 (91)[b] 1.26[21]

Ered [V] (DEp [mV]) @1.06 (61)[b] @1.33[21]

DEredox [V] 2.44 2.59
e[c] [103 Lmol@1cm@1] 15.7 14.6[22]

labs
[d] [nm] 476 450

lem
[d] [nm] 657 608[22]

FPL [%] 13 9.5[23]

tPL [ns] 1200 870[22]

[a] At room temperature. [b] Potentials are vs. stancard calomel electrode,
0.1 m in [nBu4N]PF6, recorded at a sweep rate of 100 mVs@1. The differ-
ence between cathodic (Epc) and anodic (Epa) peak potentials (DEp) is
given in parentheses. [c] Molar absorptivity. [d] labs=absorption wave-
length; lem=emission wavelength.
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1MLCT transition from Ru(dp) to L(p*) as predicted by TD-DFT.
In comparison to complex 2, the lowest energy transition,

which is HOMO!LUMO in nature, is red-shifted by 26 nm as a
result of stabilization of both the HOMO and LUMO in pres-
ence of electron-withdrawing amide functionality compared to
those in 2, thus reducing the overall HOMO-LUMO gap com-
pared to the latter in 2 (Figure S5). The emission maximum

wavelegnth of complex 1 (lem=657 nm) in degassed MeCN so-
lution at room temperature (RT) is red-shifted by 49 nm com-

pared to that of complex 2 (lem=608 nm) (Table 1 and Fig-

ure S7, the Supporting Information ). The triplet spin density
distribution (Figure S8, the Supporting Information ) obtained

from unrestricted DFT calculations of complex 1 suggests that
the excited state is predominantly distributed on ligand L and

the RuII ion as opposed to bpy; thus, the nature of emission
can be attributed to the 3MLCT transition from RuII to L.

The photoluminescence quantum yield (FPL) and the excit-
ed-state lifetime (tPL) values of complex 1 are increased to

13.3% and 1200 ns, respectively, in deaerated acetonitrile com-
pared to those of the reference complex 2 (FPL=9.5% and

tPL=870 ns, Table 1). Considering its enriched optoelectronic
properties, 1 appears to be a promising candidate to act as a

PS for the HER.
Complex 1 was tested against complex 2 in parallel experi-

ments for the photocatalytic HER (see the Supporting Informa-

tion for experimental details). Recent studies revealed the
influence of py on the catalyst activity of cobaloximes;[24] for
example, the donating effect of DMAP on cobaloxime induces
a fivefold higher HER rate than py in the complex

[Co(dmgH)2(py)Cl] in N,N’-dimethylformamide (DMF).[13d] How-
ever, the DMAP derivative demonstrates no photocatalytic ac-

tivity in acidic aqueous media due to the strong electron-with-

drawing character of the protonated dimethylamino moie-
ty.[9d,25] In our studies, the photoirradiation conditions used for

DMF–TEOA (TEOA= triethanolamine) induce a basic medium
(pHapparent=8.9) ; thus, the DMAP substituent would exhibit a

nucleophilic character. TEOA is used as a sacrificial electron
donor (SED). As we recently reported for a Ru–Co6 system, the

photocatalytic activity and decomposition pathways of the re-

agents and catalysts depend on the wavelengths of irradia-
tion.[8a]

In our studies, light-emitting diodes (LEDs) with lem=452,
523, and 630 nm were used for H2 production (quantum yield

calculations are shown in Figures S9–S11 in the Supporting In-
formation ). An overlap of the emissions of LEDs and the ab-

sorption spectra of PSs 1 and 2 were observed in all cases. Im-

midiately after turning on the blue light, 1 photosensitizes the
catalytic activity of catalyst 3 with a peak turnover frequency

(TOF) of 36000 mmolH2
molPS

@1min@1 (FH2
=18.4%), which de-

creases to exhibit a turnover number (TON) of 7800 after 20 h

(Figure 5). The reference system (2 with 3) provides a TOF of
14000 mmolH2

molPS
@1min@1 (FH2

=7.5%) and reaches a TON of

2600 after 20 h, one third of that of 1 with 3.

Figure 3. Calculated frontier molecular-orbital energies of [1]2+ and [2]2+ ,
obtained from TD-DFT (see Figure S5 for details).

Figure 4. UV/Vis absorption spectra of 1 (blue) and 2 (red) in MeCN at 298 K.
Inset : magnified spectra in the region from 500 to 650 nm.

Figure 5. H2 evolution of (1–3)+4 equiv. dmgH2 (blue) and reference system
(2–3)+4 equiv. dmgH2 (red). 1m TEOA as SED and 0.1m HBF4 as proton
source were used for both systems in DMF. Solid line: TON, dashed line:
TOF. Irradiation at 452 nm (blue light).
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Under green-light irradiation (lem=523 nm), the overlap of
the emission of the LED and the absorption spectra of PS 1
and 2 are lower compared to that under blue-light irradiation
although under green-light irradiation a higher spectral over-

lap is expected for PS 1 compared to that of PS 2. (Figure S10,
the Supporting Information ) For PS 1, the photocatalytic

reaction rate and stability with green-light irradiation are ap-
proximatively the same as for blue-light irradiation. The

hydrogen evolution under green-light irradiation of both sys-

tems (1–3 and 2–3) is different, a maximum TOF of
30100 mmolH2

molPS
@1min@1 (FH2

=45.6%) is reached for 1
whereas this value is reduced to 3500 mmolH2

molPS
@1min@1

(FH2
=9.5%) for 2 (Figure 6). The TON reaches a value of 7200

after 20 h of irradiation for 1 and 1100 after 19 h of irradiation
for 2. Moreover, considering the quantity of TEOA used as SED

([TEOA]=1m) and the fact that two electrons are given per

oxidized TEOA molecule,[26] the photocatalytic system with
[1]=0.1 mm converts, 78% and 72% of TEOA to H2 under

blue- and green-light irradiation, respectively.

In the case of PS 2, the rate of HER under green-light irradia-

tion is fivefold lower under the same conditions (under blue
light irradiation) with only half the TON.

Under red-light irradiation (lem=630 nm), PS 1 exhibits a
maximum TOF of 3050 mmolH2

molPS
@1min@1 (FH2

=5.3%) to
reach a TON of 4200 whereas the TON of hydrogen production

for PS 2 reaches a maximum of 71 and the TOFis only 18
(FH2

=2.3%) after 80 h irradiation (Figure 7). Both systems are

still active under irradiation after 80 h. To the best of our
knowledge, the TOF and TON of PS 1 are the best values

under red-light irradiation for a molecular photocatalytic

HER.[8a,14d] The tailing of the absorption spectra (Figure 4, inset)
of PSa 1 and 2 exhibits negligibly low molar absorptivity for

both PS 1 and 2 in the red energy region (l>620 nm). Consid-
ering the lower absorptivity in the red energy region and the

TOF, conversion of the absorbed photons to H2 is still efficient
compared to those under blue and green irradiation for PSs 1

and 2. Concerning a Ru–Pd dyad reported in the literature,
wavelength-dependence studies for HER show that the catalyt-

ic efficiency of the TON is correlated with the direct population

of the excited states upon excitation on MLCT.[11a] In our study,
excitation in the red, green, and blue energy region of PS 1
promotes a 3MLCT electronic transition from RuII to L, which is
also corroborated by the triplet spin density distribution of

PS 1 in its excited state (Figure S8, the Supporting Informa-
tion). For PS 1; green-light irradiation promotes population of

the 1MLCT and 3MLCT states with L providing the lowest-

energy LUMO. In this case, the quantum yield is relatively
high: FH2

=46%. Upon reduction of CoIII to CoII, the chloride

ion of catalyst 3 is free to bind in the amide pocket of L in
PS 1. Once the chloride ion is in the pocket, 1 displays en-

hanced photophysical properties as described by Beer et al.[17]

The transfer of the chloride ion to PS 1 would contribute to

the enhanced photocatalytic H2 evolution rate for PS 1 com-

pared to PS 2.[15] At this point, however, PS 1 and photocatalyst
3 would not be in a supramolecular assembly.

In conclusion, we report a photocatalytic system with an
amide-based RuII–photosensitizer (PS) (1) and a cobaloxime-
based catalyst [Co(dmgH)2(DMAP)Cl] (3, dmgH=dimethyl-
glyoxime, DMAP=4-dimethylaminopyridine) that displays a

high photocatalytic stability and rate of activity for the hydro-
gen evolution reaction. The photocatalytic system (1–3) was
found to be highly efficient under both blue- and green-light
irradiation conditions and also to be operative under red-light
irradiation, albeit with a low quantum yield for the latter. The

results were compared with [Ru(bpy)3]
2+ (2, bpy=2,2’-bpyri-

dine) combined with catalyst 3. Under each irradiation condi-

tions, 1 proves to be a more efficient PS than 2. Further inves-
tigations are underway to evaluate the impact of stronger H
bonding for chloride anion and tuning of the photocatalyst for

efficient H2 production.

Figure 6. H2 evolution of (1–3)+4 equiv. dmgH2 (blue) and reference system
(2–3)+4 equiv. dmgH2 (red). 1m TEOA as SED and 0.1m HBF4 as proton
source were used for both systems in DMF. Solid line: TON, dashed line:
TOF. Irradiation at 523 nm (green light).

Figure 7. H2 evolution of (1–3)+4 equiv. dmgH2 (blue) and reference system
(2–3)+4 equiv. dmgH2 (red). 1m TEOA as SED and 0.1m HBF4 as proton
source were used for both systems in DMF. Solid line: TON, dashed line:
TOF. Irradiation at 630 nm (red light).
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Experimental Section

CCDC 1016847 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
Synthetic, crystallographic, optoelectronic, DFT studies and experi-
mental details of the HER are available in the Supporting Informa-
tion.
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